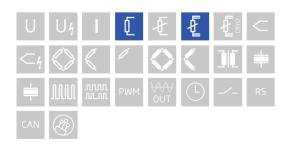
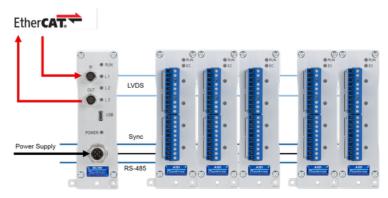


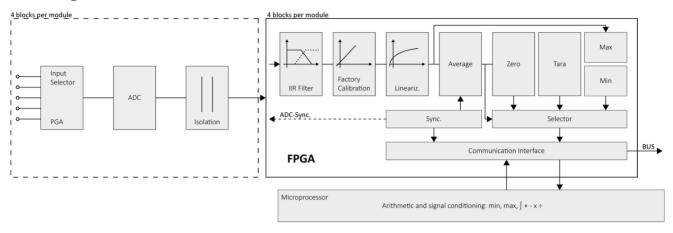
Measurement Module for Temperature (RTD) and Resistance


The Q.bloxx EC brings the high precision and performance of Q.bloxx to EtherCAT-based applications. Q.bloxx EC measurement modules possess integrated signal conditioning and arithmetic functions, packaged in environmentally secure (up to IP65), DIN Rail mountable enclosures that easily snap together for system expansion. With measurement speeds of up to 100 kHz per channel, short cycle times, and low jitter for accurate synchronization, Q.bloxx EC is the ideal solution for EtherCAT applications.


- CoE (CAN over EtherCAT) according to Modular Device Profil ETG.5001.1
- XFC technology for oversampling, oscilloscope function, cycle times 1 ms up to 0.1 ms, oversampling ≤100
- Configurable PDO Mapping to optimize the data throughput
- Module Configuration via SDO or FoE and alternative via configuration software
- Modular design for DIN Rail Mounting

Key Features

- 4 analog input channels Pt100, Pt1000, resistance 400 ohm / 4000 ohm , 2-, 3- or 4- wire connection
- High-precision temperature measurement max. measurement error 0.05°C, temperature drift 0.02 / 10K (for Pt100)
- High-accuracy digitization 24-bit ADC, 10 Hz sample rate per channel
- Signal conditioning linearization, filtering, average, scaling, min/max, RMS, arithmetic, alarm
- 3-Way galvanic isolation 500 VDC channel to channel, channel to power supply, and channel to bus



Measurement Module for Temperature (RTD) and Resistance

Block diagram

Technical Data

Analog Input

Channels	4
	0.01 % typical
Accuracy	0.025 % in controlled environment ¹
	0.05 % in industrial area ²
Linearity error	0.01 % typical full-scale
Repeatability	0.003 % typical (within 24 hrs)
Isolation voltage	500 VDC channel to channel to power supply channel to bus ³

¹ according to EN 61326 2006: appendix B

Pt100 Measurement

Sensor excitation	1 mA pulsed (500 μA effective)	
Input impedance	470 ΜΩ	
Input range	-200°C to +350°C	-200°C to +850°C
Margin of error	0.05°C	0.08°C
Resolution	0.0001°C	0.0001°C
Temperature drift	0.02°C/10 K	0.04°C/10 K
Long-term stability	<0.02°C/24h <0.05°C/8000h	<0.02°C/24h <0.1°C/8000h

Pt1000 Measurement

Sensor excitation	100 μA pulsed (50 μA effective)	
Input impedance	470 ΜΩ	
Input range	-200°C to +850°C	
Margin of error	0.1°C	
Resolution	0.0005°C	
Long-term stability	<0.05°C/24 hrs	<0.4°C/8000 hrs
Temperature drift	0.1°C/10 K	

² according to EN 61326 2006: appendix A

 $^{^{\}rm 3}$ noise pulses up to 1000 VDC, continuous up to 250 VDC

Measurement Module for Temperature (RTD) and Resistance

Resistance Measurement (400 Ω)

Sensor excitation	1 mA pulsed (500 μA effective)	
Input impedance	470 ΜΩ	
Range	0 Ω to 400 Ω	
Margin of error	0.015 Ω	
Resolution	0.0002 Ω	
Long-term stability	<10 mΩ / 24 hrs	<20 mΩ / 8000 hrs
Temperature drift	0.01 Ω / 10 Κ	

Resistance Measurement (4000 Ω)

Sensor excitation	100 μA pulsed (50 μA effective)	
Input impedance	470 ΜΩ	
Range	0 Ω to 4000 Ω	
Margin of error	0.4 Ω	
Resolution	0.002 Ω	
Long-term stability	<100 mΩ / 24 hrs	<1500 mΩ / 8000 hrs
Temperature drift	0.01 Ω / 10 Κ	

Analog to Digital Conversion

Resolution	24-bit
Update rate	10 kHz per channel, reduced by averaging to 10 Hz
Modulation method	sigma-delta
Anti-aliasing filter	500 Hz, 3rd order
Digital filters	Infinite impulse response (IIR), low-pass,1st order, frequency range 0.1 Hz 0.2 Hz, 0.5 Hz, 1 Hz, 2 Hz, 5 Hz, 10 Hz (adjustable via software)
Averaging	configurable or automatic according to the user-defined data rate

Communication Interface EtherCAT

Electrical standard	RS-485, 2-wire
Protocols	EtherCAT (LVDS)

Input Power

Input voltage	10 to 30 VDC, overvoltage and overcurrent protection
Power consumption	approx. 2.5 W
Input voltage influence	<0.001 % / V

Environmental Specifications

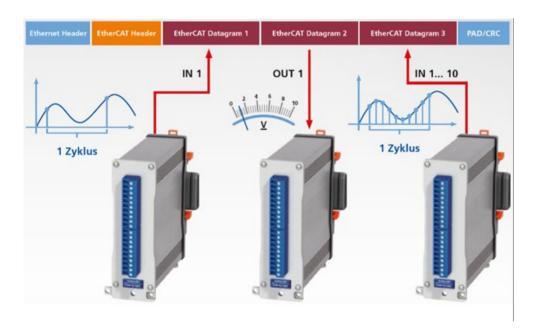
Electromagnetic compatibility (EMC)	according to IEC 61000-4 and EN 55011
Operating temperature	-20°C to +60°C
Storage temperature	-40°C to +85°C
Relative humidity	5 - 95 % at 50°C (non-condensing)

Measurement Module for Temperature (RTD) and Resistance

Remarks

Validity of all listed specifications are subject to a warm-up period of at least 45 minutes Specifications subject to change without notice

Mechanical information


Material	Aluminum and ABS
Measurements (W \times H \times D)	35.6 x 118.8 x 124 mm
Weight	approx. 400 g

Oversampling

EtherCAT also enables transmitting of very high data rates at low bus cycle by over sampling. In this case, a higher number of values of one channel per PDO transmitted so as to reduce protocol overhead.

Example: bus cycle 1 kHz, 100 times over sampling

- => 100 values are transferred per bus cycle
- => effective sample rate 100 kHz

Ordering Information

Article number 6	695133
--------------------	--------

Gantner Instruments

Austria | Germany | France | Sweden | India | USA | China | Singapore Montafonerstraße 4 · A-6780 Schruns · T +43 55 56 · 77 463-0

office@gantner-instruments.com www.gantner-instruments.com