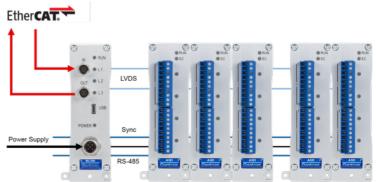


## High Density Strain Gage Measurement Module

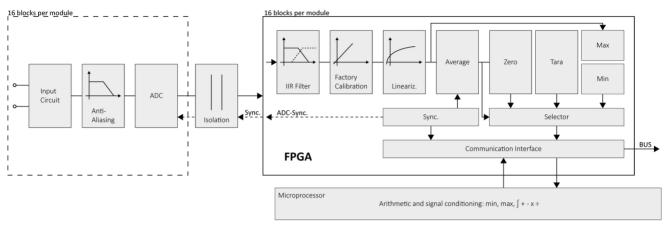
The Q.bloxx EC brings the high precision and performance of Q.bloxx to EtherCAT-based applications. Q.bloxx EC measurement modules possess integrated signal conditioning and arithmetic functions, packaged in environmentally secure (up to IP65), DIN Rail mountable enclosures that easily snap together for system expansion. With measurement speeds of up to 100 kHz per channel, short cycle times, and low jitter for accurate synchronization, Q.bloxx EC is the ideal solution for EtherCAT applications.


- CoE (CAN over EtherCAT) according to Modular Device Profil ETG.5001.1
- XFC technology for oversampling, oscilloscope function, cycle times 1 ms up to 0.1 ms, oversampling ≤100
- Configurable PDO Mapping to optimize the data throughput
- Module Configuration via SDO or FoE and alternative via configuration software
- Modular design for DIN Rail Mounting



## **Key Features**

- 16 analog input channels for strain gages quarter-bridge configuration
- High-accuracy digitization
  24-bit ADC, 10 kHz sample rate per channel
- Selectable input ranges for optimal signal-to-noise ratio
  2 or 20 mV/V (±4000 µm/m or ±40000 µm/m with k=2)
- Active lead wire resistance compensation online compensation signal (OCS) for continuous compensation of lead wire resistance changes
- Build-in shunt resistor
  Shunt verification of the complete measurement chain.
- Galvanic isolation channel to supply to interface
- Electromagnetic compatibility (EMC) according to IEC 61000-4 and EN 55011






High Density Strain Gage Measurement Module



## Block diagram



## **Technical Data**

#### Analog Input

| Channels          | 16                                                         |
|-------------------|------------------------------------------------------------|
| Accuracy          | 0.02 % typical                                             |
|                   | 0.05 % in controlled environment <sup>1</sup>              |
|                   | 0.1 % in industrial area <sup>2</sup>                      |
| Linearity error   | 0.01 % typical full-scale                                  |
| Input impedance   | <10 MΩ                                                     |
| Isolation voltage | 500 VDC channel to input voltage to interface <sup>3</sup> |

<sup>1</sup> according to EN 61326 2006: appendix B

<sup>2</sup> according to EN 61326 2006: appendix A

<sup>3</sup> noise pulses up to 1000 VDC, continuous up to 250 VDC

### Analog-to-Digital Conversion

| Resolution           | 24-bit                                                                                                                                                          |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sample rate          | 10 kHz per channel                                                                                                                                              |
| Modulation method    | sigma-delta                                                                                                                                                     |
| Anti-aliasing filter | 1 kHz, 3rd order                                                                                                                                                |
| Digital filters      | Infinite Impulse Response (IIR), low-pass, high-pass, band-pass, band-stop, Butterworth or Bessel (2nd, 4th, 6th or 8th order), frequency range 0.1 Hz to 2 kHz |
| Averaging            | configurable or automatic according to the user-defined data rate                                                                                               |



## High Density Strain Gage Measurement Module

## Strain Gage Measurement

| Bridge configuration(s)               | resistance quarter-bridge (3-wire, with lead wire resistance compensation)                                                             |                          |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| Accuracy class                        | 0.05                                                                                                                                   |                          |
| Bridge completion resistor            | 350 Ω (others upon request)                                                                                                            |                          |
| Temp. Coefficient of Resistance (TCR) | 0.05 ppm/K                                                                                                                             |                          |
| Input range                           | selectable $\pm 2 \text{ mV/V}$ or $\pm 20 \text{ mV/V}$ per channel ( $\pm 4000 \mu\text{m/m}$ or $\pm 40000 \mu\text{m/m}$ with k=2) |                          |
| Shunt resistor                        | 100 kΩ internal resistor                                                                                                               |                          |
| Bridge excitation                     | 2 VDC per channel                                                                                                                      |                          |
| Maximum sensor cable length           | 150 m                                                                                                                                  |                          |
| Long-term stability                   | < 0.2 µV/V / 24 hrs                                                                                                                    | < 2 µV/V / 8000 hrs      |
| Temperature drift                     | < 0.5 µV/V / 10 K Offset drift                                                                                                         | 0.05 % / 10 K Gain drift |
| Noise                                 | <0.3 µV/V (at 10 Hz)                                                                                                                   |                          |

### Communication Interfae EtherCAT

| Electrical standard | RS-485, 2-wire  |
|---------------------|-----------------|
| Protocols           | EtherCAT (LVDS) |

#### Input Power

| Input voltage           | 10 to 30 VDC, overvoltage and overcurrent protection |
|-------------------------|------------------------------------------------------|
| Power consumption       | 2 W (approx.)                                        |
| Input voltage influence | <0.001 % / V                                         |

### Environmental Specifications

| Electromagnetic compatibility (EMC) | according to IEC 61000-4 and EN 55011 |
|-------------------------------------|---------------------------------------|
| Operating temperature               | -20°C to +60°C                        |
| Storage temperature                 | -40°C to +85°C                        |
| Relative humidity                   | 5 - 95 % at 50°C (non-condensing)     |

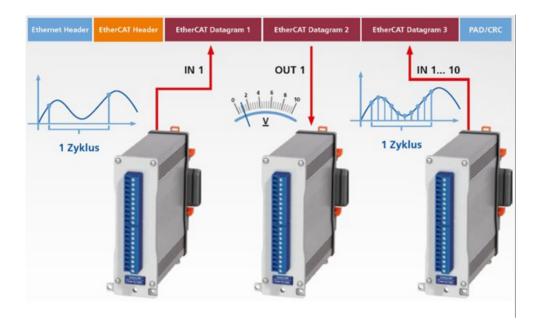
#### Remarks

| Validity of all listed specifications are subject to a warm-up period of at least 45 minutes |  |
|----------------------------------------------------------------------------------------------|--|
| Specifications subject to change without notice                                              |  |

### Mechanical Information

| Material                 | Aluminum and ABS      |
|--------------------------|-----------------------|
| Measurements (W x H x D) | 35.6 x 118.8 x 162 mm |
| Weight                   | approx. 400 g         |

## High Density Strain Gage Measurement Module




### Oversampling

EtherCAT also enables transmitting of very high data rates at low bus cycle by over sampling. In this case, a higher number of values of one channel per PDO transmitted so as to reduce protocol overhead.

Example: bus cycle 1 kHz, 100 times over sampling

- = > 100 values are transferred per bus cycle
- = > effective sample rate 100 kHz



#### Ordering Information

Article number 536123

#### Gantner Instruments

Austria | Germany | France | Sweden | India | USA | China | Singapore Montafonerstraße 4 · A-6780 Schruns · T +43 55 56 · 77 463-0 office@gantner-instruments.com www.gantner-instruments.com