

Measurement module for analog inputs and SSI

Q.bloxx XL is a new addition to the Q.series product family - the ideal DAQ solution for widely distributed installations that require higher performance and custom sensor terminations. Q.bloxx XL products are packaged in modular, DIN Rail mountable enclosures that easily snap together for system expansion. Flexibility in distribution allows for highly synchronized data that is less prone to noise due to shorter sensor cable runs to the subject.

- RS485 fieldbus interface up to 48 Mbps: LocalBus, up to 115.2 kbps: Modbus-RTU, ASCII
- Connectable to Controller Q.station X

- Electromagnetic Compatibility according to EN61000-4 and EN55011
- Power supply 10 ... 30 VDC
- DIN rail mounting (EN60715)

Key Features

- 2 galvanic isolated universal input channels strain gage and inductive half- and full-bridges, LVDT, RVDT quarter-bridge with completion terminal
- 1 galvanic isolated analog input channel
 10 VDC voltage measurement
- Synchronus Serial Interface (SSI) for absolute Encoder or Temposonics[®]
- 1 Analog output channel voltage (±10 VDC) configurable
- 4 digital inputs and outputs status, trigger, tare, alarm, command
- Galvanic isolation
 500 VDC channel-to-channel-to-power for all analogue inputs

Measurement module for analog inputs and SSI

Block diagram

Technical Data

Terminal assignment DSUB 15 HD female

	1	DO 1	1	n.c.	1	Ain +]		— 1 —	
	2	D0 2	2	EXC -	2	Ain -				1,2,3,4	11,12	² / ₄ 5
	З	DO 3	З	EXC+	З	n.c.	5~ 10-			Ооит		Uout
	4	DO 4	4	n.c.	4	Clock	-			0V	└──+V	10
	5	AOut +	5	SIG +	5	Clock	+	2				
	6	$+\vee$	6	n.c.	6	n.c.				3	3	
	7	VCC	7	SEN -	7	n.c.		3		5	10	
<u>, </u>	- 8	0V ⁿ	¹ 8	SEN + <	+ 8	n.c.				2 × × 7	~7 2	
	9	0V '	9	n.c.	9	Data	-	4		З	З	
	10	A0ut -	10	SIG -	10	Data -	ł			5	10	
	11	DI 1	11	n.c.	11	n.c.				2	×2	
	12	DI 2	12	n.c.	12	n.c.					— 4 <u> </u>	
	13	Ыз	13	n.c.	13	n.c.						
	14	DI 4	14	n.c.	14	OV				(U)	(SSI Occk- Data	
	15	n.c.	15	n.c.	15	+V				<u> </u>		

Signal Conditioning

Anti-aliasing filter	5 kHz 5th order (DC excitation) 1 kHz 5th order (CF excitation)		
Digital filters	IIR, low-pass, band-pass, 4th order, 1 Hz to 1 kHz in steps 1, 2, 5		
Averaging	configurable or automatic according to the user-defined sample rate		

Measurement module for analog inputs and SSI

Universal Input

Channels	2				
Accuracy	0.02 % typical				
	0.05 % in controlled environment				
	0.1 % in industrial area				
Repeatability	0.01 % typical (within 24	1 h)			
Input impedance	> 10 MΩ				
Isolation voltage	500 VDC channel to char	inel to power			
Sensor type	DC resistive full-, quarter	- and half-bridge, pressu	ire sensor		
	4.8 kHz carrier frequency	y mode inductive full-, qu	arter- and half-bridge, LVD	IT and RVDT	
Sensor connection	quarter-bridge		3-wire with internal 350 Ω bridge completion		
	half-bridge		3- or 5-wire for cable-length compensation		
	full-bridge		4- or 6-wire for cable-length compensation		
internal Shunt resistor	100 kΩ, Vexc+ - Vsig+				
Sensor excitation (selectable)	DC: 5 VDC	CF: 5 Veff	DC: 2.5 VDC	CF: 2.5 VDC	
Allowable sensor resistance	> 300 Q	> 300 Q	> 100 Q	> 100 Q	
Input range (user selectable)	±1.25 mV/V	±1.25 mV/V	±2.5 mV/V	±2.5 mV/V	
	±2.5 mV/V	±2.5 mV/V	±10 mV/V	±10 mV/V	
	±10 mV/V	±10 mV/V	±20 mV/V	±20 mV/V	
	±20 mV/V	±20 mV/V	±50 mV/V	±50 mV/V	
	±50 mV/V	±50 mV/V	±100 mV/V	±100 mV/V	
	±100 mV/V	±100 mV/V	±200 mV/V	±200 mV/V	
	±200 mV/V	±200 mV/V	±1000 mV/V	±1000 mV/V	
	±1000 mV/V	±1000 mV/V	±2000 mV/V	±2000 mV/V	
Temperature influence Offset drift	<0.2 µV / 10 K (2.5 mV/V input range)				
Temperature influence Gain drift	<0.05 % / 10 K				
Long-term drift	<0.2 µV/V / 24 h				
	<2 µV/V / 8000 h				
Linearity error	< 0.02 % FS				
Noise voltage at 10 Hz	<0.3 µV/V				
Noise voltage at 100Hz	<1µV/V				

Measurement module for analog inputs and SSI

Voltage Input

Channels	1			
Measurement voltage	Range	Accuracy	Resolution	
	±10 V	±2 mV	±1,2 μV	
Accuracy	0.02 % typical			
	0.05 % in controlled environment			
	0.1 % in industrial area			
Repeatability	0.01 % typical (within 24 h)			
Input impedance	>1 MΩ			
Isolation voltage	500 VDC channel to channel-to-power			
Temperature influence Offset drift	<0.2 µV / 10 K (2.5 mV/V input range)			
Temperature influence Gain drift	<0.05 % / 10 K			
long-term drift	<0.2 µV/V / 24 h			
	<2 µV/V / 8000 h			
linearity error	<2.00 % FS			
Noise voltage at 10 Hz	<0.3 µV/V			
Noise voltage at 100 Hz	<1µV/V			

Voltage Output

Channels	1
Galvanic isolation	250 VDC channel to channel-to-power
Output voltage	±10 VDC
Accuracy	0.02 %
Resolution	16-bit
Sample rate	20 kHz
Allowable load resistance	> 2kΩ
Temperature influence Offset drift	<1mV/10K
Temperature influence Gain drift	<0.05% / 10 K
Noise voltage at 10 Hz	<2mV at 10 hZ
Long-term drift	<1 mV/24 h
	<2.5 mV / 8000h

Analog/Digital-Conversion

Resolution	18-bit
Sample rate	20 kHz
Modulation method	SAR

Measurement module for analog inputs and SSI

Digital Inputs

Channels	4
Туре	status
Input voltage	max. 30VDC
Input current	max 2 mA
Threshold (Programmable)	TTL or EN61131-2, Type 1
Logic voltage "O"	-3 to 5 VDC (EN61131-2, Type 1)
Logic voltage "1"	11 to 30 VDC (EN61131-2, Type 1)

Digital Outputs

Channels	4
Туре	Status
Contact	Open drain p-channel MOSFET (short circuit proof)
Output voltage	5 to 30 VDC (external supply required)
Load capacity	30 VDC / 500 mA (resistive load capacity)

Power Supply

Input voltage	10 to 30 VDC, overvoltage and overcurrent protection
Power consumption	approx 6 W
Input voltage influence	<0.001 %/V

Environmental

Operating temperature	-20°C to +60°C
Storage temperature	-40°C to +85°C
Relative humidity	5 % to 95 % at 50°C, non-condensing

Mechanical information

Material	Aluminum and ABS
Measurements (W x H x D)	30x 145 x 135mm
Weight	approx. 500 g

Ordering Information

Article number 657531

Gantner Instruments

Austria | Germany | France | Sweden | India | USA | China | Singapore Montafonerstraße 4 · A-6780 Schruns · T +43 55 56 · 77 463-0 office@gantner-instruments.com www.gantner-instruments.com