# PT5CN ## **CANbus • SAE J1939 Output Signal** Absolute Linear Position to 250 inches (6350 mm) Hard Anodized Aluminum Enclosure High Cycle Applications IP67 • NEMA 6 Protection | Full Stroke Ranges | 0-10 to 0-250 inches | |---------------------------------|----------------------------------------| | Electrical Interface | CANbus SAE J1939 | | Protocol | Proprietary B | | Accuracy | $\pm$ 0.25% to $\pm$ 0.10% full stroke | | Repeatability | ± 0.02% full stroke | | Resolution | ± 0.003% full stroke | | Measuring Cable | stainless steel or thermoplastic | | Enclosure Material | hard anodized aluminum | | Sensor | plastic-hybrid precision potentiometer | | Potentiometer Cycle Life | see ordering information | | Maximum Retraction Acceleration | see ordering information | | Weight | 5 lbs. max. | #### **ELECTRICAL** | Input Voltage | 7 - 18 VDC | |---------------|-------------------------------------------| | Input Current | 60 mA max. | | Baud Rate | 125K, 250K, or 500K via DIP switches | | Update Rate | 10 ms. (20 ms. available-contact factory) | #### **ENVIRONMENTAL** | Environmental Suitability | NEMA 4/6, IP 65/67 | |---------------------------|-------------------------------| | Operating Temperature | -40° to 185°F (-40° to 85°C) | | Vibration | up to 10 g to 2000 Hz maximum | The PT5CN cable extension position transducer communicates linear position via the CANbus SAE J1939 interface providing a precision position feedback to your PLC. The PT5DN is offered in full stroke ranges up to 250 inches and a thermoplastic measuring cable for high cycle and rugged applications. Because the PT5CN uses a potentiometer as it's sensing element, the position signal is "absolute" and does not have to be reset to a "home" position upon startup. ### Output Signal: # I/O Format and Settings repetition = 8 msec. ## Identifier | ner | Messa | age Pr | iority | | ure<br>se | | <b>J1939 Reference</b><br>Proprietary B | | | | Data Field Type* | | | | | | | Not | Used | Node ID** | | | | | | | | | | |----------------------|-------|--------|--------|----|-----------|----|-----------------------------------------|----|----|----|------------------|----|----|----|----|----|----|-----|------|-----------|---|---|---|---|---|---|---|---|---| | Example – | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | | Identifier Bit No. – | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | Hex Value – | | | ( | ) | | | F | = | | F | | 5 | | | | 3 | | | | 3 | | | | F | | | | | | \*Sensor field data can be factory set to customer specific value. \*\*Customer defined, set via Dips 1-6. Bit values shown for example only, see Address Setting below. ## Data Field $\mathbf{B_0}$ = LSB current % of measurement range byte $\mathbf{B_1} = \mathsf{MSB}$ current % of measurement range byte $B_2$ = LSB current measurement count byte $B_3$ = MSB current measurement count byte **B**<sub>4</sub> = error flag **B**<sub>5</sub> = error flag **B**<sub>6</sub> = LSB velocity data byte B<sub>7</sub> = MSB velocity data byte #### **Current Measurement Count** The Current Measurement Count (CMC) is the output data that indicates the present position of the measuring cable. The CMC is a 16-bit value that occupies bytes $B_2$ and $B_3$ of the data field. $B_2$ is the LSB (least significant byte) and $B_3$ is the MSB (most significant byte). The CMC starts at 0x0000 with the measuring cable fully retracted and continues upward to the end of the stroke range stopping at 0xFFFF. This holds true for all ranges. #### Converting CMC to Linear Measurement To convert the current measurment count to inches or millimeters, simply divide the count by 65,535 (total counts over the range) and then multiply that value by the full stroke range: $$\left(\frac{\frac{\text{current measurement}}{\text{count}}}{\frac{65.535}{}}\right) \chi \frac{\text{full stroke}}{\text{range}}$$ Sample Conversion: If the full stroke range is **30 inches** and the current position is **0x0FF2** (4082 Decimal) then, $$\left(\frac{4082}{65.535}\right)$$ X 30.00 inches = 1.87 inches If the full stroke range is **625 mm** and the current position is **0x0FF2** (4082 Decimal) then, $$\left(\frac{4082}{65,535}\right)$$ X 625 mm = 39 mm ## B<sub>7</sub> B<sub>6</sub> B<sub>5</sub> B<sub>4</sub> B<sub>3</sub> B<sub>2</sub> B<sub>1</sub> B<sub>0</sub> #### Current % of Measurement Range The Current % of Measurement Range is a 2-byte value that expresses the current linear position as a percentage of the entire full stroke range. Resolution is .1 % of the full stroke measurement range. This value starts at **0x0000** at the beginning of the stroke and ends at **0x03E8**. #### Example: | Hex | Decimal | Percent | |----------|---------|------------| | 0000 | 0000 | 0.0% | | 0001 | 0001 | 0.1% | | 0002 | 0002 | 0.2% | | <br>03E8 | 1000 | <br>100.0% | | | | | #### Error Flags **0x55** (yellow LED on controller board) indicates that the sensor has begun to travel beyond the calibrated range of the internal position potentiometer. **OxAA** (red LED on controller board) indicates that the sensor has moved well beyond the calibrated range of the internal position potentiometer. If either error flag occurs within the full stroke range of the sensor, the unit should be returned to the factory for repair and recalibration. ## B<sub>7</sub> B<sub>6</sub> B<sub>5</sub> B<sub>4</sub> B<sub>3</sub> B<sub>2</sub> B<sub>1</sub> B<sub>0</sub> #### Velocity Data in bytes ${\bf B_7}$ - ${\bf B_6}$ is the change in the CMC (current measurement count) over a 100 msec time period. This data can then be used to calculate velocity in a post processing operation. #### **Velocity Calculation** $$\left(\frac{\text{count change - 32767}}{.1 \text{ sec. time period}}\right) X \left(\frac{\text{full stroke range}}{65,535}\right)$$ #### Sample Calculations Cable Extension (positive direction): $B_7 - B_6 = 0x89C6$ (43462 Dec), full stroke = 60 in. $$\left(\frac{35270-32767}{.1 \text{ sec}}\right) X \left(\frac{60 \text{ in.}}{65,535}\right) = 22.92 \text{ in. / sec.}$$ Cable Retraction (negative direction): $B_7 - B_6 = 0x61A8$ (25000 Dec), full stroke = 60 in. $$\left(\frac{25000-32767}{.1 \text{ sec}}\right) \chi \left(\frac{60 \text{ in.}}{65,535}\right) = -71.11 \text{ in. / sec}$$ #### Setting the Address (Node ID) and Baud Rate #### Address Setting (Node ID) The Address Setting (Node ID) is set via 6 switches located on the 8-pole DIP switch found on the DeviceNET controller board located inside the transducer. The DIP switch settings are binary starting with switch number $1 = 2^0$ and ending with switch number $6 (= 2^5)$ . #### **Baud Rate** The transmission baud rate may be either factory preset at the time of order or set manually at the time of installation. The baud rate can be set using switches 7 & 8 on the 8-pole DIP switch found on the DeviceNET controller board located inside the transducer. #### **CANBus Controller Board** #### internal dip switches & controller board to gain access to the controller board, remove four Allen-Head Screws and remove end cover bracket. Caution! Do Not Remove Spring-Side End Cover removing spring-side end cover could cause spring to become unseated and permanently damaged. | <b>DIP-1</b> (2 <sup>0</sup> ) | <b>DIP-2</b> (2 <sup>1</sup> ) | <b>DIP-3</b> (2 <sup>2</sup> ) | <b>DIP-4</b> (2 <sup>3</sup> ) | DIP-5<br>(2 <sup>4</sup> ) | <b>DIP-6</b> (2 <sup>5</sup> ) | address<br>(decimal) | |--------------------------------|--------------------------------|--------------------------------|--------------------------------|----------------------------|--------------------------------|----------------------| | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 1 | 0 | 0 | 0 | 0 | 0 | 1 | | 0 | 1 | 0 | 0 | 0 | 0 | 2 | | ••• | | | | | | | | 1 | 1 | 1 | 1 | 1 | 1 | 63 | | DIP-7 | DIP-8 | baud rate | | | | | | |-------|-------|-----------|--|--|--|--|--| | 0 | 0 | 125k | | | | | | | 1 | 0 | 250k | | | | | | | 0 | 1 | 500k | | | | | | | 1 | 1 | 125k | | | | | | | | 1 2 3 | = "0"<br> | | | | | | #### Outline Drawing: ## eyelet detail ## A DIMENSION (inches[mm]) | | N34 | S47 & V62 | |-------|-----------------|-----------------| | RANGE | measuring cable | measuring cable | | 10 | 0.05 [1,2] | 0.08 [2,0] | | 15 | 0.07 [1,8] | 0.12 [3,0] | | 20 | 0.09 [2,4] | 0.16 [3,9] | | 30 | 0.14 [3,5] | 0.23 [5,9] | | 40 | 0.19 [4,7] | 0.31 [7,9] | | 50 | 0.23 [5,9] | 0.39 [9,9] | | 60 | 0.28 [7,0] | 0.47 [11,8] | | 80 | 0.37 [9,4] | 0.62 [15,8] | | 100 | 0.46 [11,7] | 0.78 [19,7] | | 125 | 0.58 [14,7] | 0.97 [24,7] | | 150 | 0.69 [17,6] | 1.16 [29,6] | | 200 | 0.92 [23,5] | n/a | | 250 | 1.16 [29,3] | n/a | ## DIMENSIONS ARE IN INCHES [MM] tolerances are 0.03 IN. [0.5 MM] unless otherwise noted. 6.8 [172,6] - \* tolerance = +.005 -.001 [+.13 -.03] \*\* tolerance = +.005 -.005 [+.13 -.13] 0.19 [4,8] ## Ordering Information: ## Model Number: Sample Model Number: PT5CN - 50 - S47 - FR - J - 500 - 32 - SC5 R range: measuring cable: B measuring cable exit: interface: baud rate: node ID: **B** electrical connection: 50 inches .047 stainless steel front CANbus SAE J1939 500 k bits/sec. 32 decimal 5-meter cordset with straight plug ## Full Stroke Range: | <b>®</b> order code: | 10 | 15 | 20 | 25 | 30 | 40 | 50 | 60 | 80 | 100 | 125 | 150 | 200 | 250 | |-----------------------------------|-------------------|-----------|----------|--------|--------|--------|--------|----------------|--------|---------|-----------|----------------|---------|---------| | full stroke range, min: | 10 in. | 15 in. | 20 in. | 25 in. | 30 in. | 40 in. | 50 in. | 60 in. | 80 in. | 100 in. | 125 in. | 150 in. | 200 in. | 250 in. | | accuracy (±% of f.s.): | .75% | .6% | .5% | .5% | .5% | .3% | .3% | .25% | .25% | .25% | .25% | .18% | .18% | .18% | | repeatability (±% of f.s.): | .1% | .1% | .05% | .05% | .05% | .05% | .05% | .02% | .02% | .02% | .02% | .02% | .02% | .02% | | potentiometer cycle life: | | 2,50 | 0,000 cy | cles | | | | 500,000 cycles | | | | 250,000 cycles | | | | cable tension (20%): | | 41 ounces | | | | | | | | | 21 ounces | | | | | max. cable velocity/acceleration: | 300 in./sec ● 5 g | | | | | | | | | | 120 in./s | sec • 2 g | | | **Measuring Cable:** ## Cable Exit: ## **Baud Rate:** #### **Node ID:** 62 63 **B** order code: select address (0 - 63 Decimal) ## Ordering Information (cont.): ## **Electrical Connection:**