PT9CN

Heavy Industrial • J1939 CANbus

Linear Position/Velocity to 550 inches (1400 cm)

Aluminum or Stainless Steel Enclosure Options
VLS Option To Prevent Free-Release Damage
IP67 • NEMA 6 Protection

GENERAL

| Full Stroke Range Options (on this datasheet) | $0-75$ to 0-550 inches |
| :--- | ---: | ---: |
| Electrical Signal Interface | CANbus SAE J1939 |
| Protocol | Proprietary B |
| Accuracy | $\pm 0.10 \%$ full stroke |
| Repeatability | $\pm 0.02 \%$ full stroke |
| Resolution | $\pm 0.003 \%$ full stroke |
| Measuring Cable Options | nylon-coated stainless steel or thermoplastic |
| Enclosure Material | powder-painted aluminum or stainless steel |
| Sensor | plastic-hybrid precision potentiometer |
| Potentiometer Cycle Life | $\geq 250,000$ cycles |
| Maximum Retraction Acceleration | see ordering information |
| Maximum Velocity | see ordering information |
| Weight, Aluminum (Stainless Steel) Enclosure | 8 lbs. (16 lbs.), max. |

ELECTRICAL

Input Voltage	$7-18 \mathrm{VDC}$
Input Current	60 mA max.
Address Setting/Node ID	$0 . . .63$ set via DIP switches
Baud Rate	$125 \mathrm{~K}, 250 \mathrm{~K}$ or 500 K set via DIP switches
Update Rate	$10 \mathrm{~ms} .(20 \mathrm{~ms}$. available, contact factory)

ENVIRONMENTAL

Enclosure
NEMA 4/4X/6, IP 67
Operating Temperature -40° to $200^{\circ} \mathrm{F}\left(-40^{\circ}\right.$ to $\left.90^{\circ} \mathrm{C}\right)$
Vibration up to 10 g to 2000 Hz maximum

The PT9CN communicates linear position feedback via the CANbus SAE J1939 interface. The PT9CN has been designed for factory and harsh environment applications requiring full stroke ranges up to 550".

As a member of Celesco's innovative family of NEMA 4 rated cable-extension transducers, the PT9CN installs in minutes by simply mounting it's body to a fixed surface and attaching it's cable to the movable object. Perfect parallel alignment not required.

Output Signal:

I/O Format and Settings

repetition $=8 \mathrm{msec}$.

Identifier

e	Message Priority			$\begin{aligned} & \text { Future } \\ & \text { Use } \end{aligned}$		J1939 Reference Proprietary B								Data Field Type*								Not Used		Node ID**					
Example -	1	0	0	0	0	1	1	1	1	1	1	1	1	0	1	0	1	0	0	1	1	0	0	1	1	1	1	1	1
Identifier Bit No. -	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Hex Value -	0					F				F				5				3				3				F			

Sensor field data can be factory set to customer specific value. $\quad{ }^{ *}$ Customer defined, set via Dips 1-6. Bit values shown for example only, see Address Setting below.

- Data Field

$\mathbf{B}_{\mathbf{0}}=\operatorname{LSB}$ current \% of measurement range byte $\mathbf{B}_{\mathbf{1}}=$ MSB current $\%$ of measurement range byte
$\mathbf{B}_{\mathbf{2}}=\mathrm{LSB}$ current measurement count byte
$B_{3}=$ MSB current measurement count byte
$\mathbf{B}_{4}=$ error flag
$\mathbf{B}_{5}=$ error flag
$\mathbf{B}_{6}=$ LSB velocity data byte
$\mathbf{B}_{7}=$ MSB velocity data byte

\section*{| | B_{7} | B_{6} | B_{5} | B_{4} | B_{3} | B_{2} | B_{1} | B_{0} | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

Current \% of Measurement Range

The Current \% of Measurement Range is a 2-byte value that expresses the current linear position as a percentage of the entire full stroke range. Resolution is $\mathbf{. 1} \%$ of the full stroke measurement range.

This value starts at 0×0000 at the beginning of the stroke and ends at 0x03E8.

Example:

Hex	Decimal	Percent
0000	0000	0.0%
0001	0001	0.1%
0002	0002	0.2%
\ldots	\ldots	\ldots
$03 E 8$	1000	100.0%

	B_{7}	$\mathrm{~B}_{6}$	$\mathrm{~B}_{5}$	$\mathrm{~B}_{4}$	$\mathrm{~B}_{3}$	$\mathrm{~B}_{2}$	$\mathrm{~B}_{1}$	$\mathrm{~B}_{0}$	

Error Flags

0×55 (yellow LED on controller board) indicates that the sensor has begun to travel beyond the calibrated range of the internal position potentiometer.

0xAA (red LED on controller board) indicates that the sensor has moved well beyond the calibrated range of the internal position potentiometer.

If either error flag occurs within the full stroke range of the sensor, the unit should be returned to the factory for repair and recalibration.

\section*{| | B_{7} | $\mathrm{~B}_{6}$ | $\mathrm{~B}_{5}$ | $\mathrm{~B}_{4}$ | $\mathrm{~B}_{3}$ | $\mathrm{~B}_{2}$ | $\mathrm{~B}_{1}$ | $\mathrm{~B}_{0}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

Velocity

Data in bytes $\mathbf{B}_{\mathbf{7}}-\mathbf{B}_{\mathbf{6}}$ is the change in the CMC (current measurement count) over a 100 msec time period. This data can then be used to calculate velocity in a post processing operation.

Velocity Calculation

$\left(\frac{\text { count change }-32767}{.1 \text { sec. time period }}\right) \times\left(\frac{\text { full stroke range }}{65,535}\right)$

Sample Calculations

Cable Extension (positive direction):
$B_{7}-B_{6}=0 \times 80 C 6(32966 \mathrm{Dec})$, full stroke $=200 \mathrm{in}$.
$\left(\frac{32966-32767}{.1 \mathrm{sec}}\right) \times\left(\frac{200 \mathrm{in} .}{65,535}\right)=6.07 \mathrm{in} . / \mathrm{sec}$.

Cable Retraction (negative direction):
$B_{7}-B_{6}=0 \times 7 F 1 A(32538 \mathrm{Dec})$, full stroke $=200 \mathrm{in}$.
$\left(\frac{32538-32767}{.1 \mathrm{sec}}\right) \times\left(\frac{200 \mathrm{in} .}{65,535}\right)=-6.99 \mathrm{in} . / \mathrm{sec}$.

Setting the Address (Node ID) and Baud Rate

Address Setting (Node ID)

The Address Setting (Node ID) is set via 6 switches located on the 8-pole DIP switch found on the DeviceNET controller board located inside the transducer.

The DIP switch settings are binary starting with switch number $1\left(=2^{\circ}\right)$ and ending with switch number $6\left(=2^{5}\right)$.

Baud Rate

The transmission baud rate may be either factory preset at the time of order or set manually at the time of installation.

The baud rate can be set using switches 7 \& 8 on the 8 -pole DIP switch found on the DeviceNET controller board located inside the transducer.

CANBus Controller Board

address / baud rate switches

Fig. 1 - Outline Drawing (18 oz. cable tension only)

DIMENSION (INCHES)

	MEASURING CABLE			
RANGE	$\varnothing .031$ in.	$\varnothing .034$ in.	$\varnothing .047$ in. $\varnothing .062$ in.	
75	n / a	0.22	0.29	0.37
100	n / a	0.29	0.39	0.49
150	n / a	0.44	0.59	0.73
200	n / a	0.58	0.79	0.98
250	n / a	0.73	0.98	1.22
300	n / a	0.88	1.18	1.47
350	n / a	1.02	1.38	1.71
400	n / a	1.17	1.57	1.96
450	n / a	1.31	1.77	n / a
500	n / a	1.46	1.97	n / a
550	1.61	1.61	n / a	n / a

DIMENSIONS ARE IN INCHES [MM]
tolerances are 0.03 IN. [0.5 MM] unless otherwise noted.
$\begin{aligned} * \text { tolerance } & =+.005-.001[+.13-.03] \\ * * & \text { tolerance }=+.005-.005[+.13-.13]\end{aligned}$

Ordering Information:

Model Number:

Sample Model Number:
PT9CN-200-AL-N34-26-FR-J-500-32-SC5

${ }^{8}$ range:	200 inches
A enclosure	aluminum
(B) measuring cable:	. 034 nylon-coated stainless
(measuring cable tension:	18 oz.
(1) cable exit:	front (horizontal)
(3) interface:	CANbus SAE J1939
(3) baud rate:	$500 \mathrm{kbits} / \mathrm{sec}$.
(-) node ID:	32 decimal
(ii) electrical connection:	5 -meter cordset with straight plug

Full Stroke Range:

order code:	75	100	150	200	250	300	350	400	450*	500*	550*
full stroke range, min:	75 in.	100 in.	150 in.	200 in.	250 in.	$300 \mathrm{in}$.	350 in.	400 in.	450 in.	500 in.	550 in.

Enclosure Material:

A order code:

AL
powder-painted aluminum

SS
303 stainless

Measuring Cable:

B order code:	N34	S47	S31	V62
cable construction:	$\varnothing .034$-inch nylon-coated stainless steel rope	\varnothing.047-inch bare stainless steel rope	\varnothing.031-inch bare stainless steel rope	$\varnothing .058$-inch PVC jacketed vectra fiber rope
available ranges:	all ranges	all ranges up to 500 inches	550 inch range only	all ranges up to 400 inches
general use:	indoor	outdoor, debris, high temperature	outdoor, debris, high temperature	high voltage or magnetic field

Measuring Cable Tension:

C order code:	26		52	
tension (30\%):	18 oz .		36 oz .	
enclosure material:	aluminum	stainless steel	aluminum	stainless steel
max. acceleration:	1 g	. 33 g	5 g	2 g
max. velocity:	60 inches/sec	20 inches/sec	200 inches/sec	80 inches/sec
		standard housing see fig 1.		dual-spring housing see fig 2.

Cable Exit:

(1) order code:	FR	UP	BK	DN
	front	top	back	down
		a^{a}		

Baud Rate:

(F) order code:	125	250	500
	25 kbaud	250 kbaud	500 kbaud

Ordering Information (cont.):

Node ID:

G order code:	0	1	2	3	\ldots	61	62	63

select address (0-63 Decimal)

Electrical Connection:

VLS Option - Free Release Protection

The patented Celesco Velocity Limiting System (VLS) is an option for PT9000 Series cable extension transducers that limits cable retraction to a safe 40 to 55 inches per second for the single spring option and 40 to 80 inches per second for the higher tension dual spring option.

The VLS option prevents the measuring cable from ever reaching a damaging velocity during an accidental free release. This option is ideal for mobile applications that require frequent cable disconnection and reconnection. It prevents expensive unscheduled downtime due to accidental cable mishandling or attachment failure.

How To Configure Model Number for VLS Option:

creating VLS model number (example)...

1. select PT9CN model
2. remove "PT" from the model number
3. $\mathrm{add}^{\prime V} \mathrm{VLS}$ "
4. completed model number!

PT9CN-200-N34-26...
X $9 \mathrm{CN}-200-\mathrm{N} 34-26 . .$.
VLS + CN-200-N34-26...
VLSCN-200-N34-26...

Fig. 2 - Outline Drawing (36 oz. cable tension only)

DIMENSIONS ARE IN INCHES [MM]
tolerances are 0.03 IN. [0.5 MM] unless otherwise noted.

DIMENSION (INCHES)

	MEASURING CABLE			
RANGE	$\varnothing .031$ in. $\varnothing .034$ in.	$\varnothing .047$ in.	$\varnothing .062$ in.	
75	n/a	0.22	0.29	0.37
100	n/a	0.29	0.39	0.49
150	n/a	0.44	0.59	0.73
200	n/a	0.58	0.79	0.98
250	n/a	0.73	0.98	1.22
300	n/a	0.88	1.18	1.47
350	n/a	1.02	1.38	1.71
400	n/a	1.17	1.57	1.96
450	n/a	1.31	1.77	n/a
500	n/a	1.46	1.97	n/a
550	1.61	1.61	n/a	n/a

* tolerance $=+.005-.001[+.13-.03]$
$* *$ tolerance $=+.005-.005[+.13-.13]$
MEASURING CABLE

