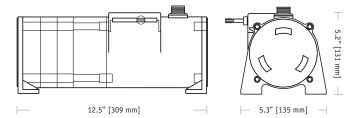
PT9CN (Extended Range) Heavy Industrial • J1939 CANBus

Linear Position/Velocity to 1700 inches (4300 cm) Stroke Range Options: 0-600 to 0-1700 inches VLS Option To Prevent Free-Release Damage IP68 • NEMA 6 Protection

GENERAL

Full Stroke Range Options (on th	nis datasheet) 0-75 to 0-550 inches
Electrical Signal Interface	CANbus SAE J1939
Protocol	Proprietary B
Accuracy	\pm 0.10% full stroke
Repeatability	\pm 0.02% full stroke
Resolution	± 0.003% full stroke
Measuring Cable Options	nylon-coated stainless stee
Enclosure Material po	wder-painted aluminum or stainless steel
Sensor	plastic-hybrid precision potentiometer
Potentiometer Cycle Life	≥ 250,000 cycles
Maximum Retraction Accelerati	on see ordering information
Maximum Velocity	see ordering information
Weight, Aluminum (Stainless St	eel) Enclosure 14 lbs. (28 lbs.), max.


ELECTRICAL

Input Voltage	7 - 18 VDC
Input Current	60 mA max.
Address Setting/Node ID	063 set via DIP switches
Baud Rate	125K, 250K or 500K set via DIP switches
Update Rate	10 ms. (20 ms. available, contact factory)

ENVIRONMENTAL

Enclosure	NEMA 4/4X/6, IP 67
Operating Temperature	-40° to 200°F (-40° to 90°C)
Vibration	up to 10 g to 2000 Hz maximum

The PT9CN communicates linear position feedback via the CANbus SAE J1939 interface. The PT9CN has been designed for factory and harsh environment applications requiring full stroke ranges up to 1700".

As a member of our innovative family of NEMA 4 rated cable-extension transducers, the PT9CN installs in minutes by simply mounting it's body to a fixed surface and attaching it's cable to the movable object. Perfect parallel alignment not required.

Output Signal:

I/O Format and Settings

repetition = 8 msec.

Current % of

Measurement

Range

B₁

B₀

Identifier Future Use J1939 Reference Message Priority Data Field Type* Not Used Node ID** Proprietary B Example 1 0 0 0 0 1 1 1 1 1 1 1 1 0 1 0 1 0 0 1 1 0 0 1 1 1 1 1 1 Identifier Bit No. 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 F Hex Value 0 F F 5 3 3

*Sensor field data can be factory set to customer specific value. **Customer defined, set via Dips 1-6. Bit values shown for example only, see Address Setting below.

Velocity Data

B₆

B₇

Data Field

B₀ = LSB current % of measurement range byte **B**₁ = MSB current % of measurement range byte

- 1 MSB current % of measurement range byte
- B_2 = LSB current measurement count byte B_3 = MSB current measurement count byte

B₇ B₆ B₅ B₄ B₃ B₂ B₁ B₀

Current Measurement Count

The Current Measurement Count (CMC) is the output data that indicates the present position of the measuring cable. The CMC is a 16-bit value that occupies bytes B_2 and B_3 of the data field. B_2 is the LSB (least significant byte) and B_3 is the MSB (most significant byte).

The **CMC** starts at **0x0000** with the measuring cable fully retracted and continues upward to the end of the stroke range stopping at **0xFFFF**. This holds true for all ranges.

Converting CMC to Linear Measurement

To convert the current measurment count to inches or millimeters, simply divide the count by 65,535 (total counts over the range) and then multiply that value by the full stroke range:

Sample Conversion:

If the full stroke range is **30 inches** and the current position is **0x0FF2** (4082 Decimal) then,

If the full stroke range is **625 mm** and the current position is **0x0FF2** (4082 Decimal) then,

Current % of Measurement Range

The Current % of Measurement Range is a 2-byte value that expresses the current linear position as a percentage of the entire full stroke range. Resolution is **.1** % of the full stroke measurement range.

This value starts at **0x0000** at the beginning of the stroke and ends at **0x03E8**.

Example:

 $\mathbf{B}_{\mathbf{4}} = \text{error flag}$

B₅ = error flag

B6 = LSB velocity data byte

B₇ = MSB velocity data byte

Hex	Decimal	Percent
0000	0000	0.0%
0001	0001	0.1%
0002	0002	0.2%
03E8	1000	100.0%

Error Flags

0x55 (yellow LED on controller board) indicates that the sensor has begun to travel beyond the calibrated range of the internal position potentiometer.

0xAA (red LED on controller board) indicates that the sensor has moved well beyond the calibrated range of the internal position potentiometer.

If either error flag occurs within the full stroke range of the sensor, the unit should be returned to the factory for repair and recalibration.

B7 B6 B5 B4 B3 B2 B1 B0

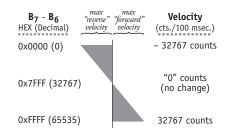
Current

Measurement

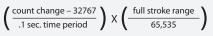
Count

B₃

Velocity


Error Flags

B₄


B5

Data in bytes $\mathbf{B_7} - \mathbf{B_6}$ is the change in the **CMC** (current measurement count) over a 100 msec time period. This data can then be used to calculate velocity in a post processing operation.

B₂

Velocity Calculation

Sample Calculations

Cable Extension (positive direction):

B7-B6 = 0x80C6 (32966 Dec), full stroke = 200 in.

$$\left(\frac{32966 - 32767}{.1 \text{ sec}}\right) X \left(\frac{200 \text{ in.}}{65,535}\right) = 6.07 \text{ in. / sec.}$$

Cable Retraction (negative direction):

B7-B6 = 0x7F1A (32538 Dec), full stroke = 200 in.

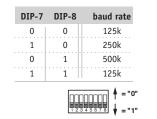
$$\left(\frac{32538 - 32767}{.1 \text{ sec}}\right) \chi \left(\frac{200 \text{ in.}}{65,535}\right) = -6.99 \text{ in. / sec.}$$

celesco.com • info@celesco.com

Setting the Address (Node ID) and Baud Rate

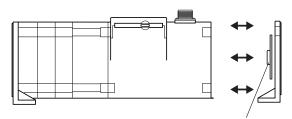
Address Setting (Node ID)

The Address Setting (Node ID) is set via 6 switches located on the 8-pole DIP switch found on the DeviceNET controller board located inside the transducer.

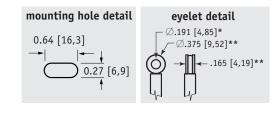

The DIP switch settings are binary starting with switch number $1 (= 2^0)$ and ending with switch number $6 (= 2^5)$.

DIP-1 (2 ⁰)	DIP-2 (2 ¹)	DIP-3 (2 ²)	DIP-4 (2 ³)	DIP-5 (2 ⁴)	DIP-6 (2 ⁵)	<i>address</i> (decimal)
0	0	0	0	0	0	0
1	0	0	0	0	0	1
0	1	0	0	0	0	2
•••						
1	1	1	1	1	1	63

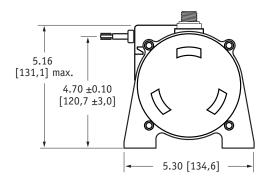

Baud Rate


The transmission baud rate may be either factory preset at the time of order or set manually at the time of installation.

The baud rate can be set using switches **7** & **8** on the 8-pole DIP switch found on the DeviceNET controller board located inside the transducer.

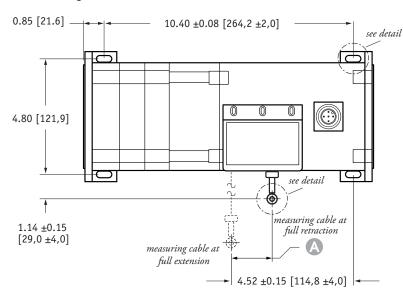


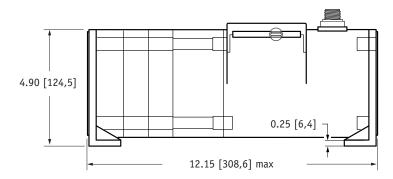
CANBus Controller Board



internal dip switches & controller board to gain access to the controller board, remove four Allen-Head Screws and remove end cover bracket.

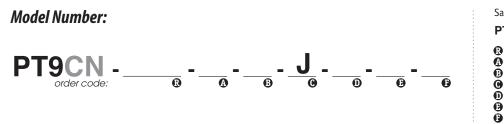
A DIMENSION


RANGE	inches [mm]
600	1.76 [44,7]
800	1.58 [40,1]
1000	1.98 [50,2]
1200	1.98 [50,2]
1500	1.86 [47,2]
1700	2.11 [53,6]



* tolerance = +.005 -.001 [+.13 -.03] ** tolerance = +.005 -.005 [+.13 -.13]

celesco.com • info@celesco.com

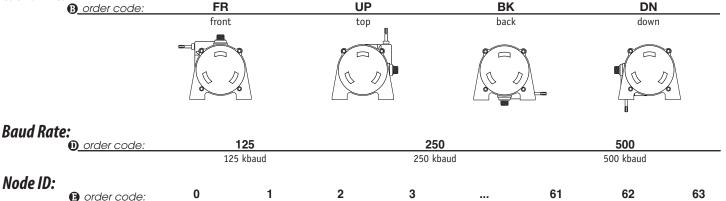

Outline Drawing

DIMENSIONS ARE IN INCHES [MM] tolerances are 0.03 IN. [0.5 MM] unless otherwise noted.

tel: 800.423.5483 • +1.818.701.2750 • fax: +1.818.701.2799 now Measurement Specialties, Inc. Ordering Information:

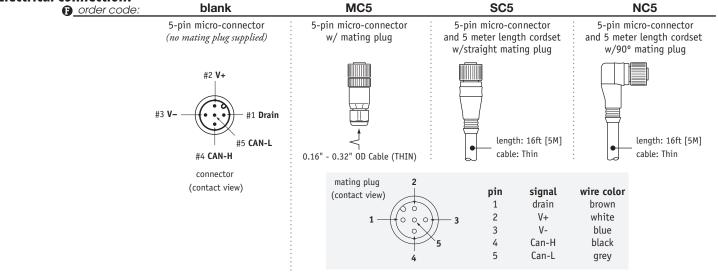
Sample Model Number:

P	PT9CN - 1200 - AL - FR - J - 500 - 32 - SC5				
Ø	range:	1200 inches			
Ā	enclosure	aluminum			
ē	cable exit:	front (horizontal)			
Õ	interface:	CANbus SAE J1939			
õ	baud rate:	500 k bits/sec.			
Ă	node ID:	32 decimal			
ă	electrical connection:	5-meter cordset with straight plug			


Full Stroke Ranae:

R order code:	600	800	1000	1200	1500	1700
full stroke range, min:	600 in.	800 in.	1000 in.	1200 in.	1500 in.	1700 in.
cable tension (±35%):	27 oz.	24 oz.	20 oz.	19 oz.	18 oz.	17 oz.
	.034-in. dia.	.019-in. dia.	.019-in. dia.	.019-in. dia.	.014-in. dia.	.014-in. dia.
measuring cable:	nylon-coated	nylon-coated	nylon-coated	nylon-coated	nylon-coated	nylon-coated
	stainless	stainless	stainless	stainless	stainless	stainless

Enclosure Material:


A order code:	AL	SS
enclosure material:	powder-painted aluminum	303 stainless steel
max. acceleration:	1g	1g
max. velocity:	60 inches/sec.	60 inches/sec.

Cable Exit:

select address (0 - 63 Decimal)

Electrical Connection:

VLS Option - Free Release Protection

Our patented Velocity Limiting System (VLS) is an option for PT9000 Series cable extension transducers that limits cable retraction to a safe 40 to 55 inches per second for the single spring option and 40 to 80 inches per second for the higher tension dual spring option.

The VLS option prevents the measuring cable from ever reaching a damaging velocity during an accidental free release. This option is ideal for mobile applications that require frequent cable disconnection and reconnection. It prevents expensive unscheduled downtime due to accidental cable mishandling or attachment failure. How To Configure Model Number for VLS Option:

version: 9.0 last updated: November 10, 2014

celesco

celesco.com • info@celesco.com